联系我们 Contat Us

上海申弘阀门有限公司
联系人:李贤
售后服务:15901754341
销售传真:86-021-31662735
公司邮箱:494522509@qq.com
办公地址:上海市青浦区金泽工业园区

产品展示首页 > 产品展示 > 调节阀型号 > 气动调节阀 > 气动控制阀
气动控制阀
更新时间:2016-12-29
产品型号:
描述:气动控制阀因为其稳定性好、维护简单而广泛应用,可设计成平衡式消除了阀瓣上的大部分静态不平衡力,并有一定的阻尼作用,可以减小流体流动引发振动,能用于压差相对较大的场合,可选择多弹簧气动簿膜机构或电动执行机构等。

气动控制阀的详细资料:

气动控制阀 概述:

气动控制阀因为其稳定性好、维护简单而广泛应用,可设计成平衡式消除了阀瓣上的大部分静态不平衡力,并有一定的阻尼作用,可以减小流体流动引发振动,能用于压差相对较大的场合,可选择多弹簧气动簿膜机构或电动执行机构等。调节阀又名控制阀,在工业自动化过程控制领域中,通过接受调节控制单元输出的控制信号,借助动力操作去改变介质流量、压力、温度、液位等工艺参数的zui终控制元件。一般由执行机构和阀门组成。如果按行程特点,调节阀可分为直行程和角行程;按其所配执行机构使用的动力,按其功能和特性分为线性特性,等百分比特性及抛物线特性三种。调节阀适用于空气、水、蒸汽、各种腐蚀性介质、泥浆、油品等介质。调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。   调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。、气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。

 

一、的分类

是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。控制和调节压缩空气流量的元件称为流量控制阀。改变和控制气流流动方向的元件称为方向控制阀。除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。从控制方式来分,气动控制可分为断续控制和连续控制两类。在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。分类如图4.1。

二、和液压阀的比较

(一) 使用的能源不同

气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。液压阀都设有回油管路,便于油箱收集用过的液压油。可以通过排气口直接把压缩空气向大气排放。

(二) 对泄漏的要求不同

液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。对来说,除间隙密封的阀外,原则上不允许内部泄漏。气动阀的内部泄漏有导致事故的危险。

对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境的污染。

(三) 对润滑的要求不同

    液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。

(四) 压力范围不同

    气动阀的工作压力范围比液压阀低。气动阀的工作压力通常为10bar以内,少数可达到40bar以内。但液压阀的工作压力都很高(通常在50Mpa以内)。若气动阀在超过zui高容许压力下使用。往往会发生严重事故。

(五)使用特点不同

一般气动阀比液压阀结构紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。气动阀正向低功率、小型化方向发展,已出现功率只有0.5W的低功率电磁阀。可与微机和PLC可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气动工业机械手、复杂的生产制造装配线等场合。

三、 的结构特性

的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。

  (一)截止式阀的结构及特性

    截止式阀的阀心沿着阀座的轴向移动,控制进气和排气。图4.2所示为二通截止式阀的基本结构。图4.2a中,在阀的P口输入工作气压后,阀芯在弹簧和气体压力作用下紧压在阀座上,压缩空气不能从A口流出;图4.2b为阀杆受到向下的作用力后,阀芯向下移动,脱离阀座,压缩空气就能从P口流向A口输出。这就是截止式阀的切换原理。

    图4.3所示的阀为常通型结构。图4.3a为初始状态,与图4.2a相反,阀心在弹簧力作用

下离开阀座,压缩空气从P口流向A口输出。图4.3b为工作状态,阀杆在向上的力作用下,阀心紧压在阀座上关闭阀口,流道被关断,A口没有压缩空气流出。

图4.4所示为三通截止式阀的结构,阀有P、A、0三个孔口。图4.4a为阀的初始状态,阀心紧压在上阀座上,P口和A口通路被关断,A口和0口相通。阀的输出A口没有输出。

图4.4b为工作状态。阀杆受力后使阀心离开上阀座而紧压在下阀座上,关闭排气O口,打开P口至A口之间的通道,压缩空气从P口流向A口输出。图4.4c所示为阀在切换过程中阀心所处的瞬态位置。此时,P、A、0三个孔口同时相通,而发生串气现象。实际上,对于快速切换的阀,这种串气现象对阀的动作不存在什么影响。但缓慢切换时,应予以注意。

截止式阀的结构决定了其开启所需的时间较短,但开启大口径的阀则需较大的开启力。因此截止式阀多用于小口径的阀。需要大流量或高压时,往往采取先导式的结构。其方法是增加一个控制活塞,先导控制气压作用在活塞上产生的较大操纵力,以弥补上述缺点。

    为了使截止式阀密封可靠,操纵方便,另一种方法是采用压力平衡的方法,如图4.5所示,在阀杆两侧增加了活塞,活塞受气压作用面积和阀心受压面积相等,这种阀称为压力平衡式阀。由于初始状态时,工作气压作用在阀杆上的合力为零,使开启阀门的操作力大大降低。

(二)滑柱式阀的结构及特性 

滑柱式阀是用圆柱状的阀心在圆筒形阀套内沿轴向移动,从而切换气路。图4.6所示为滑柱式阀的基本结构。图4.6左图为阀的初始状态,滑柱在弹簧力的作用下右移。此时,压缩空气从输人口P流向输出口A,A口有气压输出,B口无气压输出。图4.6右图为阀的工作状态;滑柱在操纵力作用下克服弹簧力左移,关断P口和A口通路,接通P口和B口。于是,B口有输出,A口无输出。

   滑柱式阀在结构上只要稍稍改变阀套或滑柱的尺寸、形状就能实现两位四通和两位五通阀的功能。

4.2  方向控制阀

一、方向控制阀概述

(一)操作方式

    为了使阀换向,必须对阀心施加一定大小的轴向力。使其迅速移动改变阀心的位置。这种获得轴向力的方式叫做换向阀的操作方式,或控制方式。通常可分为气压、电磁、人力和机械四种操作方式。

    1.气压操作

用气压力来获得轴向力使阀心迅速移动换向的操作方式叫做气压操作。它按施加压力的方式可分为加压控制、卸压控制、差压控制和时间控制。

1)加压控制是指施加在阀心控制端的压力逐渐升到一定值时,使阀心迅速移动换向的控制,阀心沿着加压方向移动。

    2)卸压控制是指施加在阀心控制端的压力逐渐降到一定值时,阀心迅速换向的控制,常用作三位阀的控制。

    3)差压控制是指阀心采用气压复位或弹簧复位的情况下,利用阀心两端受气压作用的面积不等(或两端气压不等)而产生的轴向力之差值,使阀心迅速移动换向的控制。其原理如图4.7所示,K1为控制气压口。

    这种控制方式只需一个控制信号,故得到广泛的应用,可应用于各种结构的主阀.。气压复位省去了弹簧,提高了可靠性。差压控制的特点是所控制的主阀不具有记忆功能,且控制信号和复位信号均须为长信号。

    4)时间控制是指利用气流向由气阻(节流孔)和气容构成的阻容环节充气,经过一定时间后,当气容内压力升至一定值时,阀心在差压力作用下迅速移动换向的控制。

    时间控制的信号输出有脉冲信号和延时信号两种。图4.8所示为脉冲阀原理图,在阀的P口输入气压信号后,A口即有输出,同时气流经节流孔向气室充气,当气容内的压力上升到阀的切换压力时,活塞向左移关断P—A通路,A口无输出,即阀的A口输出为脉冲信号。脉冲信号的宽度决定于节流孔和气室的大小。

    图4.9所示为一种二位三通延时换向阀结构原理(常断延时通型)。调节节流针阀的开度即可改变延时时间。

延时换向阀的输出可组成四种型式:常断延时通、常通延时断,常断延时断及常通延时通。其输出状态和对应的图形符号如图4.10所示。

    2.电磁操作

用电磁力来获得轴向力,使阀心迅速移动的换向控制方式称为电磁操作。它按电磁力作用于主阀阀心的方式分为直动式和先导式两种。

1)直动式电磁控制是用电磁铁产生的电磁力直接推动阀心来实现换向的一种电磁控制阀。根据阀芯复位的控制方式可分为单电控和双电控,其控制原理如图4.11所示。图4.11a、b为直动式单电磁控制弹簧复位方式。图4.10c、d为直动式双电磁控制方式。

2)先导式电磁控制是指由先导式电磁阀(一般为直动式电磁控制换向阀)输出的气压力来操纵主阀阀芯实现阀换向的一种电磁控制方式。它实际上是一种由电磁控制和气压控制(加压、卸压、差压等)的复合控制,通常称为先导式电磁气控。图4.12所示为先导式电磁气控换向阀原理,图4.12a、b为单电控动作原理。图4.12c、d为双电控动作原理。

3.人力操作

    用人力来获得轴向力使阀迅速移动换向的控制方式称作人力操作。人力控制可分为手动控制和脚踏控制等。按人力作用于主阀的方式可分为直动式、先导式。

4.机械操作

  用机械力来获得轴向力使阀芯迅速移动换向的控制方式称作机械操作。按机械力作用于主阀的形式可分为直动式和先导式两种。

(二)方向控制阀的通口数和基本机能

  换向阀的基本机能就是对气体的流动产生通、断作用。一个换向阀具有同时接通和断开几个回路,可以使其中一个回路处于接通状态而另一个回路处于断开状态,或者几个回路同时被切断。为了表示这种切换性能,可用换向阀的通口数(通路数)来表达。

  1)二通阀  二通阀有两个通口,即输入口(用P表示)和输出口(用A表示),只能控制流道的接通和断开。根据P→A通路静止位置所处的状态又分为常通式二通阀和常断式二通阀。

  2)三通阀  三通阀有三个通口,除P、A口外,还有一个排气口(用O表示)。根据P→A、A→0通路静止位置所处的状态也分为常通式和常断式两种三通阀。

  3)四通阀  四通阀有四个通口,除P、A、0外。还有一个输出口(用B表示)。流路为P→A、B→0,或P→B、A→0。可以同时切换两个流路,主要用于控制双作用气缸。

    4)五通阀  五通阀有五个通口,除P、A、B外,有两个排气口(用01、02表示)。其流路为P→A、B→02或P→B、A一01。这种阀与四通阀一样作为控制双作用气缸用。这种阀也可作为双供气阀(即选择阀)用,即将两个排气口分别作为输入口Pl、P2。

    此外,也有五个通口以上的阀,是一种专用性较强的换向阀,这里不作介绍。

(三) 方向控制阀的位数

    位数是指换向阀的切换状态数,有两种切换状态的阀称作二位阀,有三种切换状态的阀称作三位阀。有三种以上切换状态的阀称作多位阀。常见换向阀的通路数与切换位置如表4.1所示。

    1)二位阀  二位阀通常有二位二通、二位三通、二位四通、二位五通等。二位阀有两种,一种是取消操纵力后能恢复到原来状态的称为自动复位式。另一种是不能自动复位的阀(除非加反向的操纵力),这种阀称为记忆式。

2)三位阀  三位阀通常有三位三通、三位四通、三位五通等。三位阀中,中间位置状态有中间封闭、中间卸压、中间加压三种状态。表4.1所示为气动换向阀的通路数与切换位置

数。

(四)方向控制阀的公称通径

阀的规格直接反映了阀的流通能力,是阀的一项基本参数,也是用户选用换向阀的重要 依据之一。通常用其配管的公称通径来表示,另外也有用螺纹管接头的公称通径来表示。表4.2列出了阀的常用公称通径及相应的流量性能、接管螺纹等,供选用参考。

表4.2     阀的常用公称通径及相应的流量性能、接管螺纹

公称通径/mm

6

8

10

15

20

25

2

40

50

  连接

  螺纹

  公制

M10×1

M14×1.5

M18×1.5

M22×1.5

M27×2

M33×2

M42×2

M50×2

  M60×2

  英制

G1/8

G1/4

G3/8

Gl/2

G3/4

G1

Gl 1/4

G1 1/2

G2

    s值/mm2

10

20

40

60

110

190

300

400

650

    KV(C)值

0.50

1.01

2.0

3.0

5.6

9.6

15.2

20.2

32.8

    Cv值

0.59

1.18

2.4

3.5

6.5

11.2

17.7

23.6

38.3

额定流量/(m3/h)

2.5

5

7

10

20

30

50

70

100

  压力降/MPa

≤0.02

≤0.015

≤0.015

≤0.015

≤0.012

≤0.012

≤0.012

≤0.01

≤0.01

二、电磁阀

(一)电磁铁的基本结构

   电磁阀由电磁铁和阀体组成。电磁铁是电磁阀的主要部件之一,其作用是利用电磁原理将电信号转换成阀芯(动铁心)的位移。根据电磁铁的结构,可分为T型、Ⅰ型和平板型,如图4.13所示。

    T型电磁铁为了减少铁损,用高磁通的硅钢片层叠制成,能够获得较好的效率和较大的吸引力,但所需的行程和体积较大,主要用于行程较大的直动式电磁阀。

Ⅰ型电磁铁适用于直流电磁铁和小型交流电磁铁,用圆柱形普通磁性材料制成,其铁心的端面通常制成平面状或圆锥状。与T型电磁铁相比,Ⅰ型电磁铁的吸力较小,行程较短。圆柱形铁心的重量轻、吸引时的冲击小,所以使用寿命长,主要用于小型直动式和先导式电磁阀。

平板型电磁铁适用于交流和直流小型电磁铁,其特性与Ⅰ型相似,主要用于小型直动式截止阀和先导式电磁阀。

   (二)电磁铁的基本特性

 图4.14所示为电磁铁的电流与行程的特性关系。由图4.14可见,交流电磁铁开始吸合时电流zui大(起动电流);当动铁心与静铁心吸合后,电流呈一定值(保持电流)。大型交流电磁阀的启动电流可达保持电流的10倍以上,是小型交流电磁阀和先导式电磁阀的2倍左右。直流电磁铁的电流与行程无关,电流始终保持一定值。

    通常,电磁铁长时间吸合是不会烧坏的。但是,当发生诸如主阀被杂质卡住、动铁心与静铁心没有完全吸合等情况时,特别是交流直动式电磁阀会引起电流过载,并产生高温,烧坏线圈。

图4.15所示为电磁铁的吸力特性。交流电磁铁和直流电磁铁相似,当电压增加或行程减小时,吸力增加。但是,当动铁心的行程较大时,由于交流与直流电磁铁的电流特性不同,直流电磁铁的吸力将大大下降,而交流电磁铁吸力下降较缓慢。

常用电磁铁的额定电压有ACll0V、AC220V、DC24V等三种,允许电压偏差值为±10%,小型直流电磁铁的电压允许偏差值为-15%一+10%。交流电磁铁的特性因频率不同而变,但当频率为50Hz或60Hz时,其特性相差甚小,可以通用。

交流电磁铁因磁力线和电流方向交替变化,会发生动铁心的吸合与释放的反复动作,其频率为交流频率的2倍,因而会产生交流峰鸣声。其解决方法是在静铁心的吸合端面上嵌入短路的整流铜环,利用短路铜环感应的电流产生与主磁力线相位错开的磁力线来阻止交流蜂鸣声。

   (三)二通电磁阀

图4.16所示为二通电磁阀。图4.16a为直动式电磁阀,阀的动铁心端面带有密封橡胶,可直接封住阀座气孔。电磁铁通电时,动铁心被吸合向上,主阀打开;电磁铁断电时,动铁心被弹簧力复位,主阀关闭。图4.16b为膜片截止式先导电磁阀,膜片上有一节流小孔,输入气压能通过节流小孔作用在膜片上部,使主阀关闭。当电磁铁通电时动磁心被吸合向上,膜片上部的空气经阀座气孔流出,压力下降,膜片在上下压差作用下被顶起,主阀被打开。当电磁铁断电时动铁心关闭阀座气孔,上部压力增加,压下膜片关闭主阀。这种阀的特点是体积小、流通能力大,可通过大流量。这类阀适用于石油、化工、制冷等工业部门,用来输送空气、隋性气体、水及矿物油。

 

(四)  三通电磁阀

图4.17所示为截止式二位三通直动式电磁阀。这种阀有常闭式(NC)和常开式(NO)两种。图示为常闭式,电磁铁的动铁心两端面装有密封橡胶,上下有两个阀座。当电磁铁断电时,下面阀座被封住,P→A通路关闭,A→0通路打开;当电磁铁通电时,上面的阀座被封住。P→A通路打开,A→O通路关闭。阀体上装有手动杆,用来手动操作阀的切换。这种阀结构简单,工作可靠。常用于控制小型单作用气缸,或用作先导电磁阀的先导部分。

  (五)四通和五通电磁阀

根据电磁铁的个数分为单电控和双电控两种。根据切换位置分为二位阀和三位阀,而主阀部分的密封方式有多种多样。

(1) 二位单电控电磁阀

    图4.18所示为一种二位五通单电控电磁阀,其主阀采用截止式弹簧复位结构。先导阀的气源可以用内部P口气源(内先导),也可以用外接控制气源(外先导)。该阀用作外先导时,其zui低工作压力可从零开始。

图4.19所示也是一种二位五通单电控电磁阀,其主阀采用滑柱式气压复位结构。通路间密封采用D形密封,安装在滑柱的密封沟槽中,由于密封圈圆弧直径很小,压缩量只有0.05mm左右,所以通过圆角为0.2mm左右沟槽时不会损坏。该阀具有结构紧凑、摩擦阻力小、无给油润滑等特点。

(2) 二位双电控电磁阀

    这种阀如图4.20 a所示,具有记忆功能,电磁铁断电后主阀仍继续保持所处的切换位置。

图4.20所示为一种二位五通双电控先导式电磁阀,先导原理如图4.20b所示。主阀部分由TS密封(Triple Sqeeze)的无阀套的滑柱式阀构成。其特点是滑动阻力小,在密封方向上截面对称,无密封方向性,具有压缩密封和唇形密封的各自优点。装配时,在阀杆的TS密封件上已封入了特种润滑油脂,可在无给油润滑系统中应用。阀的结构简单,维修方便。

   (3) 三位双电控电磁阀

    这种阀具有两个电磁铁,在两个电磁铁同时断电时,阀杆回复到中间位置。除中间位置以外的另外两个切换位置的空气流路状态与二位五通阀相同。中间位置的通路状态,一般有中间封闭、中间卸压和中间加压三种状态。这种三位阀常用于停电或紧急停止后仍需保持气动执行元件正常工作状态的场合。

    图4.21所示为三位五通双电控换向阀。在没有通电时,由于两个弹簧的作用,使滑柱处于中间封闭位置。当电磁铁1通电时,它输出的气压作用在控制活塞上。阀换向:则P→A接通,B→O2排气;同样,当电磁铁2通电时,则P→B接通,A→01排气。该三位阀是靠加压控制使阀换向的,电磁先导阀为常断式。若三位阀用卸压控制换向,则电磁先导阀需用常通式的。

(六)电磁阀特性 

   电磁阀的特性包括4个方面:

(1) 流量特性  流量参数可以用有效截面积S值、流通能力Cv值表示。

(2) 响应时间  从接受控制信号开始到换向阀换向动作完成的时间,可分为开启时间与关闭时间。如图4.22所示。

(3) zui高换向频率   指电磁阀所能反复切换的zui高次数,其单位是Hz。电磁阀zui高换向频率不仅取决于开关速度,还与电磁铁温升、阀的构造和工作寿命等因素有关。通常,小型直动式电磁阀约为10~20Hz,大型先导阀约为10Hz左右,高频电磁阀可达30 Hz。

(4) 温度   通常电磁阀工作的环境温度为5~50℃,温度下限是由排气时绝热膨胀引起的温度下降不会使空气中的水分结冰的温度。温度上限是由电磁阀材料本身耐温范围所决定的。电磁阀线圈极限允许温升见表4.3。

表4.3  电磁阀线圈极限允许温升(℃)

绝缘等级

A级绝缘

E级绝缘

B级绝缘

F级绝缘

H级绝缘

长期工作制

65

80

90

115

140

间断长时或反复短时工作

80

95

105

130

155

(七) 电磁阀的电气结构

电磁阀的电气结构应使接线可靠,更换阀体方便,易于维修保养。外接线方式有多种。图4.23所示为电磁阀各种接线方式示意图。

1) 直接引线  接线直接从电磁铁的模压成形塑封中引出导线,且用不同颜色的导线来表示交流、直流和电压等参数。

2) 接线座方式  在模压成形塑封时将接线座与电磁铁制成一体,使用接线端子来连接导线的方式。 

3) DIN插座方式  使用德国DIN标准设计的插座接线端子的接线方式。

4) 接插座方式  在电磁铁上装有接插座的接线方式,并附有连接导线的插口附件。

    在阀的电气结构中常常设有指示灯,以识别电磁阀是否通电。通常,交流电工作时用氖灯,直流电工作时用发光二极管。在电磁阀电源接通或断开瞬时,在电磁铁线圈的两端会产生额定电压数倍的反电势引起的峰值电压,它可能导致控制电路误动作。或损坏电子器件。为此,电气结构中常装有(内装、或外插)由压敏电阻、RC元件或二极管构成的保护线路,用来吸收反电势峰值电压。

(八)电磁阀的连接方式

    阀的连接方式有板式连接、管式连接、集装式 (阀岛、汇流板) 连接和法兰连接。板式连接装卸方便,修理时不必拆卸管道,这对复杂的气路系统十分重要。管式连接多用于简单的气路系统中,或采用快速接头的系统中。法兰连接主要用于大通径的阀,如公称通径在32mm以上的阀。

    集装连接是在板式连接的基础上出现的一种新的连接方式,如图4.24所示。它使管路大大简化,所占空间大大缩小,装拆简便,特别适用于复杂的气路系统。

    集装连接是将多个电磁阀或气控阀集中安装在连接板上,连接板使板上安装的阀有共同的供气和共同的排气管路,或者共同的供气和个别排气的管路。

    从其装配结构可以分为整体型、模块型、集中接线型和少接线型等集装板结构。集装板材料通常为铝合金,也有带快速接头的注塑成形集装板。

    1)整体型集装板  其内部气路结构简单,体积小,结构紧凑,造价低,板上安装的阀数量不能任意改变。输出口A、B通常设在集装板的上面或侧面,如图4.24所示。

    2)模块型集装板  是一组模块化的集装板,由连接螺纹将集装板等组合而成,可根据所安装的阀数量和回路结构进行任意拼装,构成复杂的气动回路。 

    3)集中接线型集装板  这种集装板内部有接线用的接插型多芯接线端子,所安装的电磁阀可通过这些接线端子集中接线与外部连接。电磁阀与集装板的接线方式有引线型和接插座型两种,按需选用。其特点是接线简单,外观整洁,维修方便。

4)少接线型集装板  在现代气动自动化系统中,常使用PLC可编程序控制器进行系统的程序控制。为此,利用数字信号处理技术。将PLC的并联信号变换成串联信号输送给电磁阀,、仅用3—4根导线便可同时控制几十个甚至上百个电磁阀。在集装板内装有信号转换器,该转换器将串联信号再次转换为并联信号,并按编码送至指定地址的电磁阀使之动作。采用这种集装板大大减少了繁杂的接线工作,又提高了系统工作的可靠性。少接线型集装板应用如图4.25所示。

三、 气控阀

(一) 气控阀的结构

气控阀主阀部分结构与电磁阀相同。气动操纵方式有直动式和先导式两种。直动式是控制气压直接进行主阀切换;先导式是控制气压先经活塞或膜片放大,然后再进行主阀的切换。

图4.26所示为间隙密封双气控换向阀,靠钢球弹簧定位机构定位,带有手动装置,供安装调试用。该阀具有无给油润滑特点。

图4.27所示为截止式双气控换向阀,由四个二位三通阀构成,能实现四位五通功能。靠弹簧实现中间封闭位置状态。当K1有输入信号时,阀b、d打开,P→A、B→02接通;当K2有输入信号时,阀a、c打开,P→B、A→ 0l接通;当Kl、K2同时有脉冲信号时,P、A、B、01、02全部接通。该阀适用于定位、紧急停机及将双作用气缸停在特定位置等场合。

(二)气控阀的特点

  采用间隙密封的滑柱式结构时,其滑动摩擦力很小,多为直动式操纵,且阀心上受力平衡,控制压力不受工作压力影响,所以可在低压条件下动作。

    六、 顺序阀

    顺序阀亦称压力联锁阀,它是一种依靠回路中的压力变化来实现各种顺序动作的压力控制阀,常用来控制气缸的顺序动作。若将顺序阀和单向阀组装成一体,则称为单向顺序阀。顺序阀常用于气动装置中不便于安装机控阀发行程信号的场合。图4.38是顺序阀的工作原理图,图4.39是单向顺序阀的工作原理图。它们都是靠调压弹簧的预压缩量来控制其开启压力大小的。

    在图4.38a中,压缩空气从P口进入阀后,作用在阀心下面的环形活塞面积上,与调压弹簧的力相平衡。一旦空气压力超过调定的压力值即将阀芯顶起,气压立即作用于阀芯的全面积上,使阀达到全开状态,压缩空气便从A口输出.当P口的压力低于调定压力时。阀再次关闭,如图4.38b所示。

    图4.39a所示为单向顺序阀进气时的工作原理。这时,单向阀在弹簧和进气压力的作用下,处于关闭状态。排气时气流反向流动(如图4.39b所示的气流方向),阀心在弹簧作用下使阀关闭。此时。单向阀在气压作用下克服弹簧力而开启,反向流动的压缩空气经单向阀从0口排出。

七、流量控制阀

    流量控制阀对流过元件或管道的流量进行控制。只需改变流通面积就可实现。从流体力学角度看,流量控制是在气动回路中利用某种装置造成一种局部阻力,并通过改变局部阻力的大小,来达到调节流量的目。实现流量控制的方法有两种,一种是设置固定的局部阻力装置,如毛细管、孔板等;另一种是设置可调节的局部阻力装置,如节流阀。

(一) 节流阀

图4.40所示节流阀常用的孔口结构。图4.40a、b、c分别为平板阀结构、针阀结构和球阀结构。

(二)速度控制阀

速度控制阀是由单向阀和节流阀组合而成的流量控制阀,因常用作气缸的速度控制而得名,又称作单向节流阀。图4.41所示为速度控制阀结构原理。一般常用的阀如图4.41a所示,当气流沿A→0方向流动时,在气压作用下单向阀被打开,满流通过,无节流作用;而气流沿P→A方向流动时,单向阀关闭,节流阀节流,此时称为正向流动。通常,速度控制阀的流量调节范围为管道流量的20%へ30%。对于要求能在较宽范围里进行速度控制的场合。可采用单向阀开度可调节的速度控制阀,如图4.41b所示。

图4.41c所示为先导式速度控制阀。当阀的控制口没有输入信号时,气流沿A→ B流动被节流;当输入控制信号后,活塞在C口控制气压作用下,通过阀杆将单向阀顶开,使气流A→B方向满流通过。但阀处于反向流动(B→A)状态时,不管控制口有无信号,气流总是从B→A满流通过。

(三)排气节流阀 

  排气节流阀的工作原理与节流阀相同,只是安装在元件的排气口。装在元件的排气口如换向阀的排气口),通过改变排气流量来控制气缸的运动速度。由于其结构简单,安装方便,能简化回路,故应用广泛。

    图4.42所示为排气节流阀结构,图4.42a为带消声器的节流阀,直接拧在换向阀的排气口上,图4.42b为将节流阀直接安装在膜片式换向阀阀体内的一种结构,调节调整螺钉的位置就可以改变节流阀芯(塑料制品)的开度,即改变排气口01的流通面积,控制A→01的排气速度。

气动调节阀气源故障的排除办法

一、 水分造成的影响和故障

    水分是压缩机吸人湿空气后,在冷却时形成的。水分使气动装置的元件生锈、影响气动元件动作。水分造成的影响如下:

    1.管道。造成管道内部生锈;管道腐蚀,造成空气漏损,容器破裂;管道底部滞留水分造成空气流量不足,压力损失增大。 

    2. 元器件。管道生锈,加速过滤器网眼堵塞,使过滤器不能工作;管内锈屑进入阀门内部,引起动作不良,空气泄漏;锈屑使元器件咬合,不能顺利运转;直接影响气 动元器件的零部件,引起转换不良,空气泄漏和动作不稳定;水滴侵入执行器内部,造成动作不良;水滴进入元器件内部,使不能顺利运转;水滴冲洗润滑油,使润 滑不良,阀门动作失灵,执行元件运转不稳定;阀内滞留水滴造成流量不足,压力损失增大;发生水击现象引起元器件损坏。

    3. 环境。从排气口向外放出的泄放水,污染环境。水分造成的故障可采用的故障处理方法是除水,即压缩机出口温度下降到使所含水分析出水滴,并排除。为此,在压 缩机后应设置和安装冷却器和分离器,在压缩机人口安装空气过滤器。水平管道有一定斜度,在低端安装排水阀。出口安装干燥器。

   可采用的除水措施如下。

    a.吸附除水法:用吸附能力强的材料吸附水分,例如用硅胶、铝胶和分子筛等

    b,压力除湿法:提高压力,使体积缩小,温度降低,从而析出水滴。

    c.机械除水:用机械阻挡、旋风分离等除水。

    d.冷冻除水:用制冷设备使空气冷却到露点以下,使水气凝结成水析出

    二、 油分造成的影响和故障

    压缩机润滑油呈现油雾状混入压缩空气,并经受热随压缩空气一起送出,是压缩空气含油的原因。油分的影响如下:

  1.密封圈变形。密封圈收缩,空气泄漏阀动作失灵,执行元件输出力不足;密封圈泡油发胀,摩擦力增大,阀不能动作或执行元件输出力不足;密封圈硬化,摩擦面磨损,空气

泄漏量增大;摩擦增大,阀门和执行元件动作不良。

    2. 环境。工业原料化学药品直接接触空气的场所使原料化学药品性质变化;工业炉等直接接触火焰场所引起火灾危险;使用空气的计量仪器因喷嘴的堵塞而失灵;要求 极度忌油环境,由于阀门和执行元件密封部分的泄漏油造成环境污染,油分的清除方法是采用除油滤清器。例如,用离心式滤清器除油雾粒子,用活性炭吸附或用多 孔滤芯除油。

    三、 粉尘造成的影响和故障

  压缩机吸入有粉尘的空气而流入气动装置,造成气动元件摩擦,损坏和增大摩擦力。粉尘造成的影响如下:

  1.控制元件。控制元件摩擦并磨损和卡死,动作失灵和不能换向;影响调压的稳定。

  2.执行元件。执行元件摩擦并磨损和卡死,动作失灵;降低输出力。

  3.放大器等具有节流件的气动元器件。使喷嘴挡板的节流孔堵塞,因油污而失灵,粉尘的排除方法是在压缩机吸气口安装空气滤清器,进入气动装置前再用空气过滤器过

滤,定期对过滤器进行清洗或更换。

 

一、气源系统故障
1、仪表风线堵塞。由于球阀在仪表分支风线末端有节流作用,风线中赃物在此处易堆积堵塞。致使仪表风压过低,调节阀不能全开全关,甚至调节阀不动作。
2、空气过滤减压阀故障。空气过滤减压阀长时间使用赃物太多,减压阀漏风,减压阀设定输出压力过底,使输出的仪表风压小于规定的压力。致使调节阀动作迟缓,不能全开全关甚至不动作。
3、铜管连接故障。铜管老化漏风,接头连接处松动或赃物堵死铜管使仪表信号风压低致使调节阀不动作,不能全开全关,手动状态阀位不稳定产生调节振荡。
4、仪表风系统故障。空压站异常,装置净化风罐异常,切水不及时使风线结冰,仪表风线漏风或被赃物堵死,造成装置仪表风压过低甚至无风。
5、仪表风支线阀门未开,造成调节阀不动作。常发生于装置大修,改造后开车期间。

二、电源系统故障

1、电源线接线端子处松动,短路,脱落,极性接反故障。由于现场振动,接线不牢造成接线松动或灰尘太多造成接触不良使控制室到达现场的信号时有时无,致使调节阀动作混乱产生调节振荡。由于接线失误,设备进水或受潮等原因使电源线接线处短路从而使调节阀接受到的信号比调节器的信号便低,造成调节阀不能全开全关。脱落及极性接反调节阀不动作。极性接反常发生于安装新表,从新接线,装置大修等情况。
2、电源线中间接头或中间受伤处故障。电源线受环境的振动、外力的拉扯,绝缘胶带失效绝缘性能下降及接头进水高温烘烤等原因使电源线接头松动或似断非断,电源线之间短路或对地短路,接线头或电源线断裂。致使调节阀动作不连续,不能全开全关,不动作。在维修过程中电源线中间接头接反,造成调节阀不动作。9 x
3、调节阀不受调节器控制故障。在装置大修,改造后开车过程中电源线接错或控制室内组态有错误造成调节阀不受调节器控制。

三、电气转换器故障  N2 _/ K* 
1、零点、量程不准。由于安装调试不准或现场振动、温度变化等原因使转换器输出信号的零点、量程不准。致使调节阀不能全开全关,泄露量大,限量等现象。在对转换器现场调校中首先应保证转换器信号小表指示准确。平常应对信号小表进行维护。
2、节流孔堵塞。仪表风赃物堵塞节流小孔。致使调节阀不动作。
3、输出不线性。由于转换器中的线圈、部件老化或受现场振动、环境温度的影响,使转换器的输出不线性,致使在对其进行零点、量程调节过程中不能达到要求值,调节阀动作不线性,不能全开全关

四、阀门定位器故障' t, 
<一>、电气阀门定位器
1、零点、量程不准。由于定位器安装过程中调试不准或现场振动、温度变化及调节阀阀杆行程改变,反馈杆位置的改变等原因使调节阀zui小开度和zui大开度与控制室的信号不*。致使阀门定位器输出的信号不能使调节阀全开全关,造成泄露量大,限量等现象。在对定位器现场调校中首先应保证调节阀动作良好,反馈系统安装牢固动作良好,然后通过标准信号来进行调整。使调节阀的行程与控制信号*。& d
2、节流孔堵塞。赃物堵塞节流孔。使定位器无输出信号,导致调节阀不动作。
3、喷嘴、挡板间有赃物。受现场环境的影响,定位器使用一段时间后会附着一层灰尘,影响喷嘴挡板的背压,从而影响定位器的输出。造成调节阀状态不稳,产生震荡
4、密封不好。长期使用的定位器各种紧固螺母、密封垫片易发生松动、老化现象,造成定位器漏风。使调节阀不能全开全关,阀位不稳,产生调节振荡。
5、反馈杆故障。长期运行中反馈杆紧固螺母逐渐松动甚至脱落,造成反馈杆松动、歪斜、与固定件卡碰、脱落。使调节阀动作迟缓,波动频繁,调节阀限位甚至失去控制。反馈板上的限位弹簧脱落,或反馈杆从中脱出,造成反馈杆与反馈板接触不良,产生滞后,造成调节阀动作频繁。使被控参数难以稳定特别在调节阀动作要求准确的温度控制中产生较大影响。9 
6、固定螺母松动。定位器固定螺母安装不牢产生松动,造成定位器歪斜,影响反馈杆动作,造成卡碰现象。使调节阀动作不稳定,产生限位等现象。定位器中各种弹簧的紧固螺丝在震动环境下松动,改变了弹簧的预紧量,影响弹簧的张力和状态。使定位器的零点量程发生改变,定位器不线性,致使调节阀不能全开全关,调节阀动作不线性。
7、*磁铁位置发生变化。由于受到外力作用,使两块磁铁的位置发生变化,改变了磁场的位置,是线圈受力不平衡,定位器输出不线性,致使调节阀动作不线性。磁铁吸附杂质如铁销等,形成卡碰阻碍挡板的移动,使定位器的输出不准,从而使调节阀动作与控制信号不*。! \' 

<二>、智能定位器
1、反馈杆故障。反馈杆紧固螺母松动甚至脱落,造成反馈杆松动、歪斜、与固定件卡碰、脱落。使调节阀动作迟缓,波动频繁,调节阀限位甚至失去控制。定位器固定不牢发生歪斜松动,影响反馈杆的活动,造成卡碰现象使调节阀限位。反馈板上的限位弹簧脱落,或反馈杆从中脱出,造成反馈杆与反馈板接触不良,产生滞后,造成调节阀动作频繁。使被控参数难以稳定特别在调节阀动作要求准确的温度控制中产生较大影响
2、定位器调校不好。调校中中间位置没有找好,手动输出时调节阀没有去开全关,气开气关选择不对等。使调节阀不能全开全关,造成泄漏量大,限位等现象。
3、由于智能定位器的调校复杂,时间长,而且需要多次全开全关,对工艺波动大,因此调校时应把调节阀切出,特别是在调校控制温度的调节阀一定要离线调整。

五、调节阀故障

1、调节阀漏量大,调节阀全关时阀芯与阀座之间有空隙,造成阀全关时介质的流量大,被控参数难以稳定。
1>、在调节阀调校中调节阀行程调节不当或阀芯长时间使用造成阀芯头部磨损腐蚀。通常向下调节阀杆减小空隙达到减少泄漏的目的
2>、阀芯周围受到介质的腐蚀比较严重,阀芯受介质中焊渣、铁锈、渣子等划伤产生伤痕。应取出阀芯进行研磨,严重的应该更换新阀芯。
3>、阀座受到介质的腐蚀比较严重,或介质中焊渣、铁锈、渣子等划伤产生伤痕,阀座与阀体间的密封被破坏。应取出阀座进行研磨,更换密封垫片,严重的应该更换新阀
4>、阀内有焊渣、铁锈、渣子等赃物堵塞,使调节阀不能全关,应拆卸调节阀进行清洗,同时观察阀芯阀座是否有划伤磨损现象。*
5>、套筒阀阀芯与阀座间的密封垫片损坏,碟阀的密封圈损坏使调节阀全关时节流间隙比较大。" P,
2、调节阀盘根故障。阀杆与盘根间的摩擦力使调节阀小信号难以动作,大信号跳跃振动,造成调节过程中调节阀波动较大,参数难以稳定。摩擦力大时造成调节阀单向动作甚至不动。日常维护中应该定期增加润滑油或润滑脂,盘根老化严重,泄露严重的应该更换盘根。  _6 {) i7 e5 
1>、被调介质的高温高压使调节阀的盘根膨胀老化加大对阀杆的摩擦力;
2>、由于阀杆的频繁动作使盘根的密封性变差使介质外漏,若介质是高粘介质会附着在阀杆上加大了摩擦力,同时外泄介质受冷凝固更加增大了摩擦力;
3>、在处理盘根泄漏时盘根压板太紧增大了阀杆的摩擦力;
4>、调节阀安装管道前后管线不同心,使调节阀有应力且附加到阀杆上致使阀杆与盘根的摩擦力加大。
3、阀杆与连接件松动或脱落,由于现场震动或连接件紧固螺母松动,阀杆太靠下与连接件连接部分太少,在运行中阀杆与执行机构推杆不同步或脱落不动,影响调节阀动作甚至失灵。/
4、阀座有异物卡住或堵死。管道中杂质进于阀座,损坏阀芯阀座影响调节阀动作,使漏量增大。在酸性气、瓦斯气的调节中气体中的杂质在调节阀节流处逐渐沉淀堵塞调节阀。在切水阀调节中,由于介质压力小,流速缓慢,介质中的杂质逐渐沉淀堵塞调节阀或调节阀前后的管道,使调节阀失去作用。%
5、调节阀膜头故障。调节阀的波纹膜片长时间使用老化变质,弹性变小,密闭性变差,甚至产生裂纹漏风严重。压缩弹簧老化弹性系数改变,甚至断裂。使调节阀膜头输出的摧杆位移发生变化,推力变小,导致调节阀调节质量变差不能全开全关甚至失去调节作用。
6、调节阀控制系统中PID参数的设定。PID设定不当影响调节阀的动作甚至造成调节阀震荡调节,影响阀的使用寿命。在进行PID调节中首先应保证工艺介质比较稳定。如液位调节中若进料成周期性的大幅震荡,则液位很难稳定。还要确认工艺阀门的开启状态,在手动状态先使参数波动较小后,在进行PID调节。. 
7、工艺状态的确认。在调节阀漏量大时,确认副线阀门是否全关,调节阀限量时,确认调节阀前后的阀门开启程度。在被控参数变化频繁时确认工艺流程是否存在大的波动。
8、在对加热炉燃料油调节阀进行维修时,把调节阀切出投用副线运行,以防影响生产。如果不切出可开一点副线阀,维修时一定确保不因调节阀全关而使炉子熄火。1.气动套筒调节阀是自动化控制系统中仪表的执行单元,采用电-气阀门定位器,以电信号和压缩空气为动力,接受控制系统输入的0-10mA •DC或4-20mA •DC电流信号,由调节器将压缩空气,转换成气源压力信号输入输出,可实现分程控制(段幅信号),从而改变阀门开度位移,达到对流体介质的工艺参数精确调节控制
2.气动套筒调节阀按作用模式可分;正作用:气闭式-常开型(当信号压力增大时阀位向下位移),《B型》
反作用:气开式-常闭型(当信号压力增大时阀位向上位移),《K型》
3.气动套筒调节阀采用了平衡型阀芯,不平衡力小,操作稳定适用于阀前阀后压差大且泄漏稍大的工作场合。
4.直通低流阻套筒阀阀芯采用了压力平衡式阀芯,(双密封面或单密封面)结构,阀芯为圆柱型,经过精密加工开出一定特性的窗孔,由套筒的内圆导向和顶导向,因而阀杆上不平衡力很小、操作稳定、性能好,是一种力平衡型的调节阀。适用于阀前后两端压差较高的场合,由于阀芯有套筒的侧面导向,受涡流冲击所产生的振动被减弱,故具有噪音低、空化闪蒸作用小、使用寿命长等优点。但阀座泄漏率较单座阀稍大。
5.通过改变阀芯形状的设计;不同的阀芯窗孔形状会得到不同流量特性值:等百分比(对数)性、直线性。
本系列产品广泛应用于化工、石油、冶金、电站、轻纺、造纸和制药等工业生产过程的自动化调节和远程控制。有标准型、调节切断型、波纹管密封型、夹套保温型等品种。产品压力等级有PN1.6  4.0  6.4MPa;公称通径DN20~300mm;适用流体温度有-60~+450℃;按温度高低配用不同阀盖可分常温型、高温型和低温型。弹簧气动薄膜执行机构由膜片、压缩弹簧、托盘、推杆、支架、轴套、膜盖等主要零件构成。是针对老式的ZMA/B型单弹簧气动薄膜执行机构存在的尺寸大、笨重、深波纹膜片不可靠等问题设计开发的新型气动薄膜执行机构,其膜盖盘、限制件等零件均采用钢板冲压成型。膜片形状较复杂,采用特殊的压制工艺,使爆破强度达22kg/cm2以上。多弹簧形式改善了弹簧制造的工艺性,有利于不同弹簧范围的组配。可调零功能则提高了线性精度。表面处理采用环氧静电粉未喷涂,具有较高牢度和耐腐蚀性。具有受力均匀、稳定性好、尺寸小,重量轻等优点。以压缩空气为能源动力,接受电-气阀门定位器输入的气源压力信号,此压力作用在膜室膜片上产生推力压缩弹簧组件,并使推杆位移,当推杆与弹簧组被压缩后产生的反力相平衡时,阀杆就稳定在相应行程上。依照力平衡原理,行程大小与压力信号输入大小成一定的比例关系,从而达到阀门阀芯准确定位。

执行机构主要技术参数


型号

ZHA-22
ZHB-22

ZHA-23
ZHB-23

ZHB-34
ZHB-34

ZHA-45
ZHB-45

ZHA-56
ZHB-56

有效面积cm2

350

350

560

900

1600

行   程mm

10、16

25

40

60

100

弹簧范围KPa

20~100(标准):40~200;80~240; 20~60; 60~100

操作方式

普通型、带手动手轮操作型(侧装式、顶装式)

电-气阀门定位器
电气阀门定位器是工业自动化中气动执行器的主要配套仪表,可用来提高阀门位置的线性度、克服阀杆的磨擦力和消除调节阀不平衡力的影响等,从而保证阀门位置按调节仪表传来的0~10mA DC或4-20mA的电流信号成比例关系,实现正确定位。(有多种型号规格可选配) 
本公司电-气阀门定位器配用型(HEP-15隔爆型,HEP-17本安型)。也可按不同需求配用(ZPD2000系列、EP3000系列、EP4000系列、YT1000系列、YT2000系列、SIPART PS2西门子系列及智能定位器系列产品)

性能指标


项目

指标值

项目

指标值

基本误差%

不带定位器

±5.0






%

气关

不带定位器

始点

±5.0

带定位器

±1.0

终点

±2.5

回差%

不带定位器

≤3.0

带定位器

始点

±1.0

终点

±1.0

带定位器

≤1.0

气开

不带定位器

始点

±2.5

终点

±5.0

死区%

不带定位器

≤3.0

带定位器

始点

±1.0

终点

±1.0

带定位器

≤0.4

允许泄漏量L/h

1×10-3×阀额定容量

额定行程偏差%

±2.5

允许压差 MPa


开关
方式

执行
机构
型号

弹簧
范围
KPa

气源
压力
KPa




公称通径(阀座直径)mm

25

40

50

65

80

100

150

200

250

300

气关

ZHA-22

20~100
20~100
40~200

0.14
0.25
0.40

-

P或R

3.00
6.4
6.4

 

 

 

 

 

 

 

 

 

ZHA-23

20~100
20~100
40~200

0.14
0.25
0.40

-

P或R

 

2.25
6.4
6.4

1.95
6.4
6.4

 

 

 

 

 

 

 

ZHA-34

20~100
20~100
40~200

0.14
0.25
0.40

-

P或R

 

 

 

2.36
6.4
6.4

2.04
6.4
6.4

1.67
6.4
6.4

 

 

 

 

ZHA-45

20~100
20~100
40~200

0.14
0.25
0.40

-

P或R

 

 

 

 

 

 

1.41
6.4
6.4

1.14
6.4
6.4

 

 

气开

ZHA-22

20~100
40~200
80~240

0.14
0.25
0.40

-
P或R
P

 

1.5
4.5
6.4

 

 

 

 

 

 

 

 

ZHA-23

20~100
40~200
80~240

0.14
0.25
0.40

-
P或R
P

 

 

1.13
3.38
6.40

0.98
2.93
6.4

 

 

 

 

 

 

ZHA-34

20~100
40~200
80~240

0.14
0.25
0.40

-
P或R
P

 

 

 

1.18
3.54
6.4

1.02
3.06
6.4

0.84
2.51
5.85

 

 

 

 

ZHA-45

20~100
40~200
80~240

0.14
0.25
0.40

-
P或R
P

 

 

 

 

 

 

0.71
2.12
4.94

0.57
1.71
4.00

 

 

注:
1、P-阀门定位器;R-压力继动器;   
2、允许压差为阀关闭P2=0状态下,P的zui大值;
3、如果允许压差不清楚或zui大工作压差超出列表范围请与我们。

阀体部分:

阀体型式:直通铸造球型阀
公称通径:DN20 、25 、32 、40 、50 、65 、80 、100 、200
公称压力:PN 1.6、2.5、4.0、6.4、10.0Mpa
ANSI 150、300、 600Lb
JIS 10K、20K、30K、40K
连接方式:法兰:FF、RF、RTJ、等
螺纹:(适用于 1”以下)
焊接:SW、BW
法兰距:符合IEC 534
阀盖形式:标准型、加长型(散热、低温、波纹管密封)
填  料:V型聚四氟乙烯、柔性石墨填料等
密封垫:金属夹石墨密封垫、聚四氟乙烯垫
执行机构:气动:多弹簧执行机构 、单弹簧执行机构
电动:3810L系列 、PSL系列

阀内部件:

阀芯型式:窗口式套筒
流量特性:等百分比、线性 、快开
内件材质:标准材质组合及使用温度、压力范围请参阅附录

表1.可提供的用户选择

阀体型式直通阀盖型式标准、加长型
材质WCB、WC9、304、316等材质WCB、WC9、304、316等
阀芯特性直线、等百分比、快开填料“V”型PTFE、柔性石墨、波纹管
材质304、304+STL/PTFE、316、316+STL/PTFE
执行器气动:见表8
电动:见表7
定位器电气阀门定位器、智能型数字定位器
附件电磁阀、阀位反馈器、手操机构、保位阀、空气过滤减压器等

 材料及内部结构

表2.本体材质为碳钢

1阀体WCBLCBWC9
2垫片316+石墨/PTFE
3螺栓354MnB25Cr2Mo1VA
4套筒304304304
5螺母253525Cr2Mo1VA
6阀芯(杆)304304304
7垫片316+石墨/PTFE
8阀盖WCBLCBWC9
9填料垫304304304
10填料PTFE/柔性石墨
11压套螺母304304304

表3.本体材质为不锈钢

1阀体CF8CF8MCF3M
2垫片316+石墨/PTFE
3螺栓304316316L
4套筒304316316L
5螺母304316316L
6阀芯(杆)304316316L
7垫片316+石墨/PTFE
8阀盖CF8CF8MWF3M
9填料垫304316316L
10填料PTFE/柔性石墨
11压套螺母304316316L

注:

1、以上为标准的配置结构,阀座为金属对金属,PTFE软阀座是VI级密封的可选件。还可提供用斯太莱合金涂层的硬化阀内件。针对具体使用温度,我们有更加合理的螺栓螺母选择。

2、PTFE V形环阀杆填料是的标准配置也可选用柔性石墨,一个配备石墨填料的加长型阀盖可用于温度超过232℃(450华氏温度)的场合。

3、标准的阀体材料是碳钢和不锈钢,还可以提供多种用于高腐蚀性应用场合的合金材料。

可提供的控制阀流量特性

表4.ZJHM系列气动套筒调节阀尺寸及缩腔型内件与行程额定Cv值:

阀门尺寸inch(mm)阀芯尺寸(mm)额定行程(mm)额定Cv值
阀门开度%行程
等百分比特性直线特性
10%30%50%70%100%10%30%50%70%100%
3/4
(20)
8160.090.170.340.951.60.270.681.091.491.8
100.140.270.531.482.50.421.061.692.322.8
150.220.430.852.3740.671.662.653.654.4
200.340.681.353.746.31.052.604.165.726.9
1
(25)
15160.220.430.852.3740.671.662.563.654.4
200.340.681.353.746.31.052.604.165.726.9
250.551.082.145.93101.674.156.649.1111
1 1/4
(32)
20250.340.681.353.746.31.052.604.165.726.9
250.551.082.145.93101.674.156.649.1111
320.871.733.429.49162.676.6310.6214.5817.6
1 1/2
(40)
25250.551.082.145.93101.674.156.649.1111
320.871.733.429.49162.676.6310.6214.5817.6
401.362.725.3514.82254.1710.3716.5922.7927.5
2
(50)
32250.871.733.429.49162.676.6310.6214.5817.6
401.362.725.3514.82254.1710.3716.5922.7927.5
502.184.328.5423.71406.6716.6826.5636.4644
2 1/2 (65)40401.362.725.3514.82254.1710.3716.5922.7927.5
502.184.328.5423.71406.6716.5826.5636.4644
653.346.8113.4537.356310.4720.0141.6357.1769
3
(80)
50402.184.328.5423.71406.6716.5826.5636.4644
653.346.8113.4537.356310.4726.0141.6357.1769
805.4510.8121.3659.2810016.6941.4666.3791.14110
4
(100)
65403.346.8113.4537.356310.4726.0141.6357.1769
805.4510.8121.3659.2810016.6941.4666.3791.14110
1008.7217.2934.1794.8516026.7066.34106.2145.8176
5
(125)
806013.6210.8121.3659.2810016.6941.4666.3791.14110
10021.8017.2934.1794.8516026.7066.34106.2145.8176
12513.6227.0653.40148.225041.72103.7165.9227.9275
6
(150)
1006021.8017.2934.1794.8516026.7066.34106.2145.8176
12513.6227.0653.40148.225041.72103.7165.9227.9275
15021.8043.2385.42237.140066.75165.85265.5364.6440
8
(200)
1256013.6227.0653.40148.225071.72103.7165.9227.9275
15021.8043.2385.42237.140066.75165.85265.5364.6440
20034.3468.08134.5373.5630104.7260.1416.3571.7690

.多弹簧薄膜式执行机构 单位:Mpa

气行机构规格气源压力Kpa

弹簧范围

Kpa

阀芯尺寸 Inch(mm)

3/4

20

1

25

1 1/4

32

1 1/2

40

2

50

2 1/2

65

3

80

4

400

5

125

6

150

8

200

ZHB2214020~1001.170.75---------
24040~2002.731.75---------
30080~2405.853.75---------
ZHB2314020~1001.641.050.630.40.26------
24040~2003.822.451.490.960.61------
30080~2408.195.243.192.051.31------
ZHB3414020~100--1.020.660.420.240.160.10---
24040~200--2.381.530.980.580.380.24---
30080~240--5.123.282.101.240.820.52---
ZHB4514020~100-----0.400.260.170.110.070.02
24040~200-----0.930.610.390.250.170.07
30080~240-----1.981.320.840.540.370.16

※以上推荐使用压差等只是相对而言,针对各种压差会有多种配置组合,对于复杂的控制系统请您与我们技术部门,我们有多年的过程控制产品生产的经验,为您提供更合理的执行机构配置。

表6-配置ZH系列气动执行机构控制阀外形尺寸 单位: mm

ZJHP外形尺寸图

阀门尺寸LH1H2h1H3CBAL2执行机构
inchmmANSI150 PN16、25ANSI300 PN40ANSI600PN64、100
3/4201847.251847.252068.1242553213704288200200289ZHB-22
1251847.251847.252108.2543558218710288200200289ZHB-22
1 1/4322007.872007.872519.8844870231722288200200289ZHB-22
1 1/2402228.752228.752519.8844875231722288200200289ZHB-23
250254102541028611.2548783255740288200200289ZHB-23
2 1/26527610.8827610.8831112.2562893311884360355355347ZHB-34
38029811.7531712.5033713.2564598328902360355355347ZHB-34
410035213.8836814.5039415.50656115328913360355355347ZHB-34
512542016.5340015.7550019.698061253891274470570570476ZHB-45
615045117.7547318.6250820.008571434401325470570570476ZHB-45
820060021.3856822.38610249261805141394470570570476ZHB-45

※由于产品改进和技术创新或者一些特殊要求,各种阀门的连接尺寸可能会有所变化,请技术部门,以得到的产品资料。我们也可按照你的现场要求定做特殊的结构尺寸的阀门。阀门的法兰焊接坡口等尺寸连接按照各种标准的相关要求。

订货须知:

一、①产品名称与型号②口径③是否带附件以便我们的为您正确选型④使用压力⑤使用介质的温度。
二、若已经由设计单位选定公司的调节阀型号,请型号直接向我司销售部订购。

三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数,由我们的阀门公司专家为您审核把关。如有疑问:请

我们一定会尽心尽力为您提供优质的服务。提供zui全面、专业的“阀门系统解决方案”,也十分愿意帮助用户解决生产中所遇到的难题。

 如果你对气动控制阀感兴趣,想了解更详细的产品信息,填写下表直接与厂家联系:

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
QQ在线客服
电话咨询
  • 15901754341