
上海申弘阀门有限公司
联系人:李贤
售后服务:15901754341
销售传真:86-021-31662735
公司邮箱:494522509@qq.com
办公地址:上海市青浦区金泽工业园区

D-EDRV动态平衡电动调节阀的详细资料:
电动动态平衡阀 | 动态平衡电动调节阀|动态平衡电动二通阀
上海申弘阀门的动态平衡电动调节阀是区别于传统的电动调节阀的新一代产品,是动态平衡与电动调节一体化的产品。动态平衡阀用于需要进行流量控制的水系统中,尤其适用于供热、空调等非腐蚀性液体介质的流量控制。运行前一次性调节,即可使系统流量自动恒定在要求的设定值。特点1.能使系统流量自动平衡在要求的设定值; 2.能自动消除水系统中因各种因素引起的水力失调现象,保持用户所需流量,克服“冷热不均”,提高供热,空调的室温合格率; 3.能有效地克服“大流量,小温差”的不良运行方式,提高系统能效,实现经济运行
电动动态平衡阀是一种动态平衡与电动调节同步执行的特殊阀门.其阀芯也是由可调部分和水力自动调节部分组成。可调部分的开度依实际需要随时进行电动调节;水力自动调节部分可根据不同的压差来自动调节阀芯的开度。这种类型的平衡阀经过简单的初始设定后,即可完全适应水力系统的变化,实现动态平衡水力系统的目的。既可就地控制,也可接驳楼宇DDC控制;它主要被应用在变流量系统中,控制诸如组合式空调箱~热交换器的一次水等需要根据负荷调整水流量的地方。它采用全新的设计理念,使得调节阀在系统实际工作过程中当压力波动时,能动态的平衡系统的压力变化。因此,这种的调节只受标准控制信号的作用,而不受系统压力波动的影响,而且,对应电动阀的任一开度位置,其流量都是*和恒定的,因此,这种动态平衡电动阀特别适用在系统负荷变化较大的变流量系统中,具有抗干扰能力强,工作状态稳定,调节精度高的特点。避免了传统的电动调节阀即使在同一开度位置,由于系统压力的波动,其流量也是变化的,电动阀输送热(冷)量不稳定,抗干扰能力差,调节精度低的缺点。1.能使系统流量自动平衡在要求的设定值;
2.能自动消除水系统中因各种因素引起的水力失调现象,保持用户所需流量,克服“冷热不均”,提高供热,空调的室温合格率;
3.能有效地克服“大流量,小温差”的不良运行方式,提高系统能效,实现经济运行。
4.具有优良的电动调节功能:
电动调节功能是指阀门能根据目标区域温度控制信号的变化自动的调节阀门的开度,从而改变水流量,zui终使目标区域的实际温度与设定温度*。
评价电动调节功能好坏的是电动调节阀的流量特性曲线。在空调系统中,常用的电动调节阀的理想流量特性曲线是直线的或者等百分比的。但是对于一般的电动调节阀,在实际使用过程中由于阀权度较小,使得实际的流量特性曲线偏离理想的流量特性曲线。如图3,某电动调节阀理想的流量特性曲线是直线型(曲线1),但是在安装到系统管路上后实际的流量特性曲线接近快开型(曲线2),调节特性变差。
由于独特的阀体结构,在实际的使用工程中阀权度基本为1,因此其实际的流量特性曲线与理想的流量特性曲线*,没有偏离,因此具有优良的电动调节功能。
5.具有动态平衡功能:
动态平衡功能是指根据末端设备负荷变化要求电动调节阀胆调至某一开度时,不论系统压力如何变化,阀门都能够动态地平衡系统的阻力,使其流量不受系统压力波动的影响而保持恒定。
假定处于夏季工况,区域一已调至平衡状态,即目标区域的温度T1已稳定在25℃,这时动态平衡电动阀的开度维持在某一位置保持不变以输出一个恒定的流量。
1、动态平衡阀,用于需要进行流量控制的水系统中,尤其适用于供热、空调等非腐蚀性液体介质的流量控制。运行前一次性调节,即可使系统流量自动恒定在要求的设定值。
2、动态平衡阀是一种特殊功能的阀门,它具有良好的流量特性,有阀门开启度指示,开度锁定装置及用于流量测定的测压小阀。利用智能仪表,输入阀门型号和开度值,根据测得的压差信号就可直接显示出流经该平衡阀的流量值,只要在各支路及用户入口装上适当规格的平衡阀,并用智能仪表进行一次性调试,就可使各用户的流量达到设定值。
动态平衡阀
动态平衡阀正确地理解应为水力工况平衡用阀。从这一观念出发一切用于水力工况平衡的阀门如调节阀、减压阀、自力式流量控制阀、自力式压差控制阀都应看成水力工况平衡用阀——平衡阀。而市场上称为平衡阀的产品,仅是附加了流量测试功能的一种手动调节阀。
动态平衡阀是指手动调节阀或手动平衡阀。动态平衡阀是指自力式流量控制阀和自力式压差控制阀。自力式流量控制阀也曾称作自力式流量控制器、自力式平衡阀。自力式压差控制阀在北欧也称为Automotic Balamce Valve即自动平衡阀。
水力工况和水力工况平衡
一般地说供热、空调的管网都是闭路循环的管网,其水力工况是指系统各点的压力,各管段的流量、压差。由公式△P=SG2
△P——压差或称阻力损失
S——管段或系统的阻力系数
G——管段或系统的流量
可知,流量和压力是相关参数,流量和压力的调控互为手段和目的。减压手段是减少上游管路的流量;减少流量也必湎是减少管路前点的压力或增加管路后点的压力。流量变化必然导致压力的变化;S值不变的系统,压差的变化必然起因于流量的改变。因此说没有一咱不影响压力的流量控制阀,也没有一种不影响流量的压力控制阀。
水力工况平衡是指流理的合理分配。在供热和空调管网中,水是热载体介质,水流量的合理分配是热力工况平衡的基础。以供热系统为例,设计者在进行水力工况计算时在各分支流量为设计值的假想情况下进行的。由于管材及zui高流速成的限制,设计上实现水力平衡几乎是不可能的。这样势必造成近端阻力系数不能达到设计理想状态,形成近端流量过大,远端流量不足的失调现象。
由于水力工况设计成了一个设计水压图,而实际运行时这一水压图必须由阀门平衡调节而形成。用阀门调节水力工况的过程是建立合理水压图的过程,在设计合理的情况下,这两个水压图会会合得很好。
由于运行水力工况是水泵的工作曲线与外网特性曲线交点形成的。
对于外网特性曲线△P=SG2,由于并联的近端支路S值会小于设计值,造成总S值远小于设计值,循环水泵在小扬程大流量工况下运行,使水泵在大轴功率,低效率点运行。严重时可能出现轴功率大于电机铭牌功率,电机超额定电流,直至烧电机事故发生。
调网的过程就是用平衡阀增加近端阻力,使近端支路S值增大至设计值,总S值增大至设计值。使远近流量分配均匀合理,循环水泵在设计工况下运行,达到节热、节电,提高供热质量的目的。
运行岗们工作者常对一些水力工况失衡现象形成误解:
(1)水泵出力不足,水泵实际扬程小于铭牌扬程,导致辞末端过不去水。
实际上是由于近端支线阻力小、流量大,造成远端流量小,水泵工作点偏移在大流量、小扬程、低效率的工作点。
(2)锅炉或换热器阻力大,所有锅炉或换热器厂商标称阻力都远小于实际阻力。
实际上总循环水量的加大必然导致辞锅炉换热器等阻力加大。水流量增大40%,阻力增加100%。
(3)锅炉出力不足,实际上流量加大后供回水温差不可能更大。当然煤质和风系统不正常也可能造成锅炉出力问题。
调网水压图分析和平衡阀的安装位置
调网的过程是利用平衡阀使各分支达到合理流量的过程。近端资用压头大于用户需用压头必然导致流量过大。必须用阀门消耗富裕压头富裕压头=资用压头-需用压头),如果用户供水管安装平衡阀调网,则P3近似等于P4,P2压力线如图三所示,近乎平行P4。如果用户回水管安装平衡阀调网,则P2近似等于P1,P3压力线近乎平行P1。
户内实际供水压力为P2,回水压力为P3。如果压力过低会导致运行倒空,压力过高导致耐压等级较低的元件(如散热器)的压力破坏。
因此对地形高差大的管网应按上述因素考虑平衡阀的安装位置。即在地形低洼处楼群平衡阀宜安装于供水,以保证户内不起压;在地形较高位置平衡阀宜安装于回水,以保证用户不倒空。
对于大型直联管网,如电厂凝汽供热管网,供热半径很大,外网供回水压差很大,因此对平衡阀安装位置应作特殊考虑。
回水压差52米水柱,考虑散热器耐压能力,末端回水压力设定为0.35MPa(35米水柱),前端回水压力仅为0.1MPa(10米水柱),而前端供水压力高达0.62MPa(62米水柱),如果平衡阀安装在回水管上,被控用户的回水压力P3可能接近0.6MPa,必将造成散热器的压力破坏;如果平衡阀安装于供水管上,近端用户的供水压力P2只有十几米水柱必然导致运行倒空。因此从设计上应采取供回水都安装平衡阀的方案,形成图四的水压图。
具体作法是入户口供水管安装自力式流量控制阀,在地形高差不超出10米的建筑群的分支回水管上安装手动的平衡阀。这里自力式流量控制阀负责控制分配流量;手动平衡阀调整压力,使阀前压力达到0.25MPa的满水运行工况。自力式流量控制阀只依据流量大小“肓目”控制压力,如果安装回水管上,不待手动调整压力,已经出现压力破坏事故。自力阀安装在供水未手动调整压力时,可能出现运行倒空而影响供热效果,不可能发生事故。
用户主动变流量和热源主动变流量的概念
对于供热系统在传统的供热体制下是一种平均分配的供热模式,这种供热模式一般采取定流量的质调节供热方式。也有少数大型管网出于节约运行电能的目的,采取质量并调方式。但在平均代热的前提下,流理的变化仅决定于室外气温变化,因此其控制方式,仅考虑采用室外温度单一参数控制热源循环泵的转速,实现变流量运行。这种变流量运可定义为热源主动变流量方式。
在热计量收费的运行方式下,供热负荷及循环水流量的变化取决于用户需求,系统总循环流量的变化决定于用户的变化,这种变流量机制可定义为用户主动变流量方式。
有一些业内人士提出计量收费的室内系统采用水平跨越管式系统,企图沿用定流量方式运行,这里估且不论水平跨越是否可实现流量运行,单就定流量运行方式浪费运行电能这一项就应予以废止。
这种计量收费流量控制方案,以下述方案为zui佳可行方案:取3—5个末端供回水压差信号为热循环流量的控制信号,当全部压差信号都大于设定值时循环水泵降低转速,当任意一个压差小于设定值时,循环水泵增加转速
如下图所示,在系统负荷波动较大的变流量系统中,当系统压力变化时,二端的压差(P1-P3)也随之变化:
⑴、当进口压力P1升高时,(P1-P2)增大,这时电动阀阀芯向上运动,使P1、P2间开度减少,阀芯压力P2降低;当进口压力P1降低时,(P1-P2)减小,这时电动阀阀芯向下运动,使P1、P2间开度增大,阀芯压力P2升高。因此,无论系统的压力怎样变化,通过电动阀阀芯的调节作用,P2、P3间的压差始终保持不变。因此这种动阀的抗干扰能力强,具有动态平衡的功能;
⑵、当直行程电动执行器接受控制信号使阀轴延A—B向上下运动(或角行程电动执行器接受控制信号使阀轴延R向旋转)时,P2、P3间的开度也随之变化。由于不管系统压差(P1-P3)如何变化,P2、P3间的压差(P2-P3)始终不变,因此对应于任一开度位置,其输送的水流量都是一定的,并且电动调节阀实际的流量特性曲线与其理想的流量特性曲线是*的,没有偏离。因此这种电动调节阀较传统的电动调节阀具有更好的调节特性。
电动动态平衡阀材质:
阀体 | 球墨铸铁 | 电动执行器外壳 | 铝合金 |
阀套 | 不锈钢 | 阀芯 | 黄铜 |
技术参数:
产品型号 | 阀门形式 | 规格 | 压差范围 | 流量范围 | 工作 | 流量 | 流体 |
D-EDRV1 | 二通 | DN25 | 30-300 | 0.2-2.9 | PN16 | 5% | 0-100℃ |
D-EDRV2 | DN32 | 30-300 | 0.5-4-7 | ||||
D-EDRV3 | DN40 | 30-300 | 1-7-7 | ||||
D-EDRV4 | DN50 | 30-300 | 2-12.1 | ||||
D-EDRV8 | DN65 | 30-300 | 3-20.4 | ||||
D-EDRV9 | DN80 | 30-300 | 5-30.8 | ||||
D-EDRV10 | DN1OO | 30-300 | 10-45.3 | ||||
D-EDRV11 | DN125 | 30-300 | 15-70-7 | ||||
D-EDRV12 | DN150 | 30-300 | 20-101.8 | ||||
D-EDRV13 | DN200 | 33-300 | 5.0-360 | ||||
D-EDRV14 | DN250 | 22-210 | 4.O-460 |
产品型号 | 阀门形式 | 规格 | 外形及安装尺寸(mm) | ||||
L | H1 | H2 | D(φ)法兰 | G螺纹 | |||
D-EDRV1 | 二通 丝口 | DN25 | 160 | 265 | 70 | G1 | |
D-EDRV2 | DN32 | 180 | 275 | 70 | G1-1/4 | ||
D-EDRV3 | DN40 | 300 | 290 | 90 | G1-1/2 | ||
D-EDRV4 | DN50 | 300 | 290 | 90 | G2 | ||
D-EDRV5 | 二通 法兰 | DN32 | 160 | 220 | 70 | 1OO | |
D-EDRV6 | DN40 | 200 | 235 | 110 | 110 | ||
D-EDRV7 | DN50 | 215 | 230 | 115 | 125 | ||
D-EDRV8 | DN65 | 230 | 238 | 120 | 145 | ||
D-EDRV9 | DN80 | 275 | 275 | 146 | 160 | ||
D-EDRV10 | DNl00 | 290 | 295 | 165 | 180 | ||
D-EDRV11 | DNl25 | 315 | 307 | 208 | 21O | ||
D-EDRV12 | DNl50 | 350 | 326 | 205 | 240 | ||
D-EDRV13 | DN200 | 430 | 715 | 295 | 295 | ||
D-EDRV14 | DN250 | 520 | 740 | 345 | 355 |
订货须知:
一、①产品名称与型号②口径③是否带附件以便我们的为您正确选型④使用压力⑤使用介质的温度。
二、若已经由设计单位选定公司的平衡阀型号,请型号直接向我司销售部订购。
三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数,由我们的阀门公司专家为您审核把关。如有疑问:请我们一定会尽心尽力为您提供优质的服务。
如果你对D-EDRV动态平衡电动调节阀感兴趣,想了解更详细的产品信息,填写下表直接与厂家联系: |
下一篇:EDRV动态电动平衡阀